Write your name here

Surname		Other names			
	Centre Number		Candid	date Nu	umber
Pearson Edexcel Level 1/Level 2 GCSE (9-1)					

Mathematics

Paper 3 (Calculator)
Foundation Tier

SBNQMF"TTFTTNFOU.BUFSJBMT*TTVF
Paper Reference
Time: 1 hour $\mathbf{3 0}$ minutes
1MA1/3F

You must have: Ruler graduated in centimetres and millimetres, Total Marks protractor, pair of compasses, pen, HB pencil, eraser, calculator

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
- - there may be more space than you need.

Calculators may be used.

- If your calculator does not have a a button, take the value of \mathfrak{a} to be 3.142 unless the question instructs otherwise.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Answer ALL questions.

Write your answers in the spaces provided.
You must write down all the stages in your working.
1 Write 2148 correct to the nearest 100

2 (a) Simplify $8 x-3 x+2 x$

$$
\begin{gathered}
(8 x-3 x)+2 x \\
5 x+2 x=7 x
\end{gathered}
$$

(b) Simplify $4 y \times 2 y$

$$
\begin{aligned}
& 4 \times 2=8 \\
& y \times y=y^{2}
\end{aligned} \Rightarrow 85^{2}
$$

3 There are 6760 people at at a rugby match.
3879 of the people are men.
1241 of the people are women.
$1 / 4$ of the children are girls.
Work out how many boys are at the rugby match.
$6760-(3879+1241)=1640$ children
If $1 / 4$ of children are girls then $3 / 4$ are boys $\rightarrow 1-1 / 4=3 / 4$ $3 / 4 \times 1640=1230$ boys
(Total for Question 3 is $\mathbf{3}$ marks)

4 Here is a grid showing the points A, B and C.

(a) Write down the coordinates of the point A.
(b) On the grid, mark with a cross (\times) the point $(1,2)$.

Label this point D.
(c) On the grid, mark with a cross (\times) a point E, so that the quadrilateral $A B C E$ is a kite.

5 Faiza buys
one magazine costing $£ 2.30$
one paper costing 92 p
two identical bars of chocolate
Faiza pays with a $£ 5$ note.
She gets 40p change.
Work out the cost of one bar of chocolate.

$$
\begin{align*}
& \epsilon 5-(\epsilon 2.30+\epsilon 0.92+2 x)=\epsilon \in 0.40 \\
& \epsilon 3.22+2 x=\epsilon 4.60 \\
& 2 x=\epsilon 1.38 \\
& x=\epsilon 0.69
\end{align*}
$$

6 The bar chart gives information about the numbers of students in the four Year 11 classes at Trowton School.

(a) What fraction of the students in class 11A are girls?

$$
\begin{aligned}
& 15+14=29 \text { stvonts } \\
& 15 \text { girl } 15 \text { out of } 29 \rightarrow 15 / 29
\end{aligned}
$$

Shola says,
"There are more boys than girls in Year 11 in Trowton School."
(b) Is Shola correct?

You must give a reason for your answer.

Total boys $\rightarrow 14+12+8+4=38$
Total girls $\rightarrow 15+11+7+5=38$
She is incorrect as there are same number of bobs and girls in Year 11.

Pearson Edexcel Level I/Level 2 GCSE (9-I) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015

The pie chart gives information about the 76 students in the same four Year 11 classes at Trowton School.

Number of students in Year 11 of Trowton School

Tolu says,
"It is more difficult to find out the numbers of students in each class from the pie chart than from the bar chart."
(c) Is Tolu correct?

You must give a reason for your answer.
Yes, because she would have to do a calculation for each section of the pie chart (and measure each angle) to work out number of studuts in each class.

7 Here is a number machine.

(a) Work out the output when the input is 4
$4 \times 3=12$
$12-4=8$
(b) Work out the input when the output is 11

Do the steps back wards to get input when given output.
$11+4=15$
$15 \div 3=5$
(c) Show that there is a value of the input for which the input and the output have the same value.

$$
\begin{aligned}
& \text { Input }=\text { Out put }=x \\
& 3 x-4=x \\
& 3 x-x=4 \\
& 2 x=4 \\
& x=2
\end{aligned}
$$

81 yard is 36 inches.
10 cm is an approximation for 4 inches.
Work out an approximation for the number of cm in 2 yards.

$$
\begin{aligned}
& \times 2\left(\begin{array}{l}
1 \text { yard }=36 \text { inches } \\
2 \text { yards }=72 \text { inches }
\end{array} \times 2\right. \\
& \times 18\left(\begin{array}{l}
10 \mathrm{~cm}=4 \text { inches } \\
180 \mathrm{~cm}=72 \text { inches }
\end{array} \times 18\right.
\end{aligned}
$$

$$
2 \text { yards }=180 \mathrm{~cm}
$$

9 Work out 234% of 150

$$
2341 \cdot \text {, so multiplier is } \frac{234}{100}=2.34
$$

$150 \times 2.34=351$

10 Here are four numbers.
0.43
43.8\%
$\frac{7}{16}$

Write these numbers in order of size.
Start with the smallest number.
$\frac{3}{7}=0.4285714286$
$43.81^{\circ}=0.4380$
$\frac{7}{16}=0.4375$
0.4300

Smallest to largest
$\overrightarrow{0.42857 \ldots, 0.43}, 0.4375,0.438$
$\frac{3}{7}, 0.43, \frac{7}{16}, 43.8 \cdots$
$\frac{3}{7}, 0.43,7 / 16,43.8 .10$ (Total for Question 10 is 2 marks)

11 Here is a list of five numbers.
14
15
16
17
18

From the list,
(i) write down the prime number,

17 because its only divisible by itself and 1
(ii) write down the square number.

$$
16 \rightarrow \sqrt{16}=4
$$

12 Here is a star shape.

The star shape is made from a regular hexagon and six congruent equilateral triangles.
The area of the star shape is $96 \mathrm{~cm}^{2}$.
Work out the area of the regular hexagon.
That regular hexagon can be split into 6 equilateral triangles. $6+6=12$ equilateral triangles
$\frac{96 \mathrm{~cm}^{2}}{12}=8 \mathrm{~cm}^{2}$ per triangle
Area of hexagon $\rightarrow 6 \times 8=48 \mathrm{~cm}^{2}$

13

$W X Y Z$ is a quadrilateral.
$X Y V$ is a straight line.
(a) (i) Find the size of the angle marked a.
$a=180-147=33^{\circ}$
(ii) Give a reason for your answer.

The sum of angles on a straight line is 180°

Angle $Z W X=$ angle $W X Y$
(b) Work out the size of angle $Z W X$.
$\angle 2 w x=\angle w X y=x$
$360=145+33+x+x$
$360=178+2 x$
$360-178=2 x$
$182=2 x$
$91^{\circ}=x$

14 The total weight of 3 tins of beans and 4 jars of jam is 2080 g .
The total weight of 5 tins of beans is 2000 g .
Work out the weight of 1 tin of beans and the weight of 1 jar of jam.

$$
\frac{2000}{5}=400 \text { grams tor } 1 \text { tin of beans. }
$$

Jam $=x$
$(3 \times 400)+4 x=2080 \mathrm{~s}$
$4 x=880$
$x=220$ grams

tin of beans	400	g
jar of jam	220	g

15 There are 25 boys and 32 girls in a club.
$2 / 5$ of the boys and $1 / 2$ of the girls walk to the club.
The club leader picks at random a child from the children who walk to the club.
Work out the probability that this child is a boy.
$\frac{2}{5}$ of 25 boys walk $\rightarrow \frac{2}{5} \times 25=10$
$\frac{1}{2}$ of 32 girls walk $\longrightarrow \frac{1}{2} \times 32=16$
$\frac{10}{26}$ boys walk out of all that walk.

$\frac{10}{26}$

16 Change $72 \mathrm{~km} / \mathrm{h}$ into m / s.
$72 \mathrm{~km}=72000$ metres
1 hour $=60$ minutes $=3600$ seconds
$\frac{72000}{3600}=20 \mathrm{~m} / \mathrm{s}$

17 Here is a rectangle made of card.

The measurements in the diagram are in centimetres.
Lily fits four of these rectangles together to make a frame.

The perimeter of the inside of the frame is $P \mathrm{~cm}$.
(a) Show that $P=8 x-4 y$

$$
2 x+2 x+(2 x-2 y)+(2 x-2 y)=8 x-4 y
$$

Magda says,
"When x and y are whole numbers, P is always a multiple of 4."
(b) Is Magda correct?

You must give a reason for your answer.
$8 x-4 y \rightarrow 4(2 x-y)$

Yes, 4 is a factor of P hence P is always a
multiple of 4 .

18 The diagram shows a trapezium $A B C D$ and two identical semicircles.

The centre of each semicircle is on $D C$.
Work out the area of the shaded region.
Give your answer correct to 3 significant figures.
Area of trapezium $=\frac{(a+b)}{2} \times h \rightarrow\left(\frac{28+12}{2}\right) \times 14=280 \mathrm{~cm}^{2}$

$$
\begin{aligned}
\text { Area of semi-circle }=1 / 2 \pi r^{2} \rightarrow 2 \times\left(1 / 2 \times \pi \times 3^{2}\right) & =2 \times \frac{9}{2} \pi \\
& =9 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

$$
=252 \mathrm{~cm}^{2} \quad(35 t)
$$

19 Asif is going on holiday to Turkey.
The exchange rate is $£ 1=3.5601$ lira.
Asif changes $£ 550$ to lira.
(a) Work out how many lira he should get.

Give your answer to the nearest lira.
$\left.\begin{array}{rl}\times 550\left(\begin{array}{l}\epsilon 1= \\ \square \in 550\end{array}\right. & =1958.055 \\ & =1958 \text { lira lira }\end{array}\right) \times 550$

Asif sees a pair of shoes in Turkey.
∇ The shoes cost 210 lira.
Asif does not have a calculator.
He uses $£ 2=7$ lira to work out the approximate cost of the shoes in pounds.
(b) Use $£ 2=7$ lira to show that the approximate cost of the shoes is $£ 60$

(c) Is using $£ 2=7$ lira instead of using $£ 1=3.5601$ lira a sensible start to Asif's method to work out the cost of the shoes in pounds?

You must give a reason for your answer.

Yes it is a sensible start because its a close estimate. He uses $\epsilon^{2}=7$ lira so $\neq 3.5$ lira
The actual conversion is $t 1=3.5601$ lira
So its very chose and his estimate (Total for Question 19 is 5 marks)
allows him to calculate conversion without a calculator easily.

78 Pearson Edexcel Level I/Level 2 GCSE (9-I) in Mathematics - Sample Assessment Materials (SAM) - Issue 2 - June 2015 © Pearson Education Limited 2015

20 Here are the first six terms of a Fibonacci sequence.

$$
\begin{array}{llllll}
1 & 1 & 2 & 3 & 5 & 8
\end{array}
$$

The rule to continue a Fibonacci sequence is,
the next term in the sequence is the sum of the two previous terms.
(a) Find the 9th term of this sequence.

$1,1,2,3,5,8$

$7^{\text {th }}$ term $\rightarrow S+8=13$
$8^{\text {th }}$ form $\rightarrow 8+13=21$
gath term $\rightarrow 13+21=34$
The first three terms of a different Fibonacci sequence are

$$
a \quad b \quad a+b
$$

(b) Show that the 6th term of this sequence is $3 a+5 b$
$a, b, a+b$
$4^{\text {th }}$ term $\longrightarrow(a+b)+(b)=a+2 b$
$5^{\text {th }}$ term $\longrightarrow(a+2 b)+(a+b)=2 a+3 b$
$6^{\text {th }}$ form $\longrightarrow(2 a+3 b)+(a+2 b)=3 a+5 b$
Given that the 3rd term is 7 and the 6 th term is 29 ,
(c) find the value of a and the value of b.
(1) $a+b=7$
(1) $\times 3 \rightarrow 3 a+3 b=21$
(2) $3 a+5 b=29$
(2) $\rightarrow 3 a+5 b=29$

$$
0 a-2 b=-8
$$

$a+b=7$
$a+4=7$
$a=3$

21 In a survey, the outside temperature and the number of units of electricity used for heating were recorded for ten homes.

The scatter diagram shows this information.

Number of units used

Molly says,
"On average the number of units of electricity used for heating decreases by 4 units for each ${ }^{\circ} \mathrm{C}$ increase in outside temperature."
(a) Is Molly right?

Show how you get your answer.
$(20,36) \quad(2,80) \quad \frac{80-36}{2-20}=\frac{44}{-18}=-2.45$ units per ${ }^{\circ} \mathrm{C}$
So she is wrong as units of electricity used decreases by 2.6 units for each increase of $1^{\circ} \mathrm{C}$. Not 4 units like she suggested.
(b) You should not use a line of best fit to predict the number of units of electricity used for heating when the outside temperature is $30^{\circ} \mathrm{C}$.

Give one reason why.
Its extrapolation as the line of best fit dosent reach $30^{\circ} \mathrm{C}$. So using line of best fit in this case is unreliable.

22 Henry is thinking of having a water meter.
These are the two ways he can pay for the water he uses.

Henry uses an average of 180 litres of water each day.
Use this information to determine whether or not Henry should have a water meter.
Water used per year $\rightarrow 180 \times 365$ days $=65,700$ litres
$\frac{65,700}{1000}=65.7$ cubic metres per sear
With meter $\rightarrow(-28.20+(65.7 \times \in 0.9122)=\underline{\epsilon 88.13154}$
Without meter $\rightarrow \in 107$
So with meter is cheaper and that is why he should have it.

23 A and B are two companies.
The table shows some information about the sales of each company and the number of workers for each company in 2004 and in 2014

	Company A		Company B	
	Sales (£ millions)	Number of workers	Sales (£ millions)	Number of workers
$\mathbf{2 0 0 4}$	320	2960	48	605
$\mathbf{2 0 1 4}$	388	3200	57	640

(a) Work out the percentage increase in sales from 2004 to 2014 for Company A.

$$
\begin{aligned}
& 320 \times m=388 \\
& \frac{388}{320}=1.2125 \rightarrow 50 \underline{21.2500^{\circ} \text { increase }}
\end{aligned}
$$

(b) Which company had the most sales per worker in 2014, Company A or Company B?

You must show how you get your answer.

$$
\begin{array}{ll}
A \rightarrow \frac{388}{3200}=0.12125 & 0.12125>0.0890625 \\
B \rightarrow \frac{57}{640}=0.0870625 & \begin{array}{l}
\text { So Company A has more } \\
\text { sales Re worker. }
\end{array}
\end{array}
$$

